
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.5 Time Class Case Study: Constructors

with Default Arguments (cont.)

Notes Regarding Class Time’s Set and Get Functions and
Constructor
• Time’s set and get functions are called throughout the class’s

body.

• In each case, these functions could have accessed the class’s
private data directly.

• Consider changing the representation of the time from three
int values (requiring 12 bytes of memory on systems with
four-byte ints) to a single int value representing the total
number of seconds that have elapsed since midnight (requiring
only four bytes of memory).

• If we made such a change, only the bodies of the functions that
access the private data directly would need to change.
– No need to modify the bodies of the other functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.5 Time Class Case Study: Constructors

with Default Arguments (cont.)

• Designing the class in this manner reduces the

likelihood of programming errors when

altering the class’s implementation.

• Duplicating statements in multiple functions or

constructors makes changing the class’s

internal data representation more difficult.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.5 Time Class Case Study: Constructors

with Default Arguments (cont.)

C++11: Using List Initializers to Call Constructors

• C++11 now provides a uniform initialization syntax called list

initializers that can be used to initialize any variable. Lines 11–13

of Fig. 9.6 can be written using list initializers as follows:
Time t2{ 2 }; // hour specified; minute and second defaulted

Time t3{ 21, 34 }; // hour and minute specified; second defaulted

Time t4{ 12, 25, 42 }; // hour, minute and second specified

or
Time t2 = { 2 }; // hour specified; minute and second defaulted

Time t3 = { 21, 34 }; // hour and minute specified; second defaulted

Time t4 = { 12, 25, 42 }; // hour, minute and second specified

• The form without the = is preferred.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.5 Time Class Case Study: Constructors

with Default Arguments (cont.)

C++11: Overloaded Constructors and Delegating

Constructors

• A class’s constructors and member functions can also be

overloaded.

• Overloaded constructors typically allow objects to be

initialized with different types and/or numbers of arguments.

• To overload a constructor, provide in the class definition a

prototype for each version of the constructor, and provide a

separate constructor definition for each overloaded version.

– This also applies to the class’s member functions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.6 Time Class Case Study: Constructors

with Default Arguments (cont.)

• In Figs. 9.4–9.6, the Time constructor with three parameters had

a default argument for each parameter. We could have defined

that constructor instead as four overloaded constructors with the

following prototypes:
Time(); // default hour, minute and second to 0

Time(int); // initialize hour; default minute and second to 0

Time(int, int); // initialize hour and minute; default second to 0

Time(int, int, int); // initialize hour, minute and second

• C++11 now allows constructors to call other constructors in the

same class.

• The calling constructor is known as a delegating constructor—it

delegates its work to another constructor.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.5 Time Class Case Study: Constructors

with Default Arguments (cont.)
• The first three of the four Time constructors declared on the previous slide can

delegate work to one with three int arguments, passing 0 as the default value for

the extra parameters.

• Use a member initializer with the name of the class as follows:

Time::Time()

 Time(0, 0, 0) //delegate to Time(int, int, int)

{

} // end constructor with no arguments

Time::Time(int hour)

 Time(hour, 0, 0) //delegate to Time(int, int, int)

{

} // end constructor with one argument

Time::Time(int hour, int minute)

 Time(hour, minute, 0) //delegate to Time(int, int, int)

{

} // end constructor with two arguments

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.6 Destructors

• The name of the destructor for a class is the tilde character (~)
followed by the class name.

• Called implicitly when an object is destroyed.

• The destructor itself does not actually release the object’s
memory—it performs termination housekeeping before the
object’s memory is reclaimed, so the memory may be reused to
hold new objects.

• Receives no parameters and returns no value.

• May not specify a return type—not even void.

• A class has one destructor.
• A destructor must be public.

• If you do not explicitly define a destructor, the compiler defines
an ―empty‖ destructor.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.7 When Constructors and Destructors Are

Called

• Constructors and destructors are called implicitly.

• The order in which these function calls occur depends on
the order in which execution enters and leaves the scopes
where the objects are instantiated.

• Generally, destructor calls are made in the reverse order of
the corresponding constructor calls
– The storage classes of objects can alter the order in which

destructors are called.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.7 When Constructors and Destructors Are

Called

Constructors and Destructors for Objects in Global Scope

• Constructors are called for objects defined in global scope

(also called global namespace scope) before any other

function (including main) in that program begins execution

(although the order of execution of global object

constructors between files is not guaranteed).
– The corresponding destructors are called when main terminates.

• Function exit forces a program to terminate immediately and

does not execute the destructors of local objects.

• Function abort performs similarly to function exit but

forces the program to terminate immediately, without allowing

the destructors of any objects to be called.

 ©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

